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Introduction
Following the first report by Furchgott and Zawadzki (1980)[1] 
that in response to acetylcholine, endothelial cells release a 
vasodilator substance [endothelium-derived relaxing factor 
(EDRF)] later identified as nitric oxide (NO), a number of other 
inhibitory endothelial signals [endothelium-derived hyper-
polarizing factors (EDHF)] have been shown to contribute to 
relaxations of the underlying vascular smooth muscle cells[2–9].  
In addition, it soon became apparent that under certain cir-
cumstances the endothelium can also produce diffusible 
substances [endothelium-derived contracting factors (EDCF)] 
which activate the contractile process in the underlying vas-
cular smooth muscle cells[10].  Besides receptors-mediated 
agonists such as thrombin, acetylcholine and adenosine nucle-
otides (ADP and ATP)[11–13], stretch can also elicit endothelium-
dependent contractions, at least in canine cerebral arteries[14].  
The early observation that such endothelium-dependent 
contractions could be prevented by inhibitors of cyclooxyge-
nase suggested that down-stream products of this enzyme, ie 
prostanoids, were likely candidates as EDCF[12, 15–18].  Although 
endothelial cells can produce vasoconstrictors including 

endothelin-1 and angiotensin II, there is lack of convincing 
evidence showing a direct link between these substances 
and instantaneous changes in tension that can be attributed 
to the release of EDCF.  Thus, the present article focuses on 
the mechanisms leading to the production of endothelial and 
cyclooxygenase-derived vasoconstrictors, and updates earlier 
reviews on this topic[19–21].

Endothelial calcium concentration
An increase in intracellular calcium concentration in the 
endothelial cells is the triggering event leading to the release 
of EDCF.  This conclusion is based on the following observa-
tions: (a) Activation of cell membrane receptors by agonists 
such as acetylcholine [activating endothelial M3-muscarinic 
receptors[22]], ADP and ATP [activating purinoceptors[11, 23], 
which are known to induce the release of calcium from the 
sarcoplasmic reticulum[24], initiate the production of EDCF; 
(b) Reduction in the extracellular calcium concentration 
decreases endothelium-dependent contractions[25]; (c) Calcium 
ionophores such as A23187 elicit endothelium-dependent 
contractions[13, 26–29]; (d) Endothelium-dependent contractions 
induced by acetylcholine in the rat aorta are accompanied by 
an increase in cytosolic endothelial calcium concentration[26, 27] 
and this increment is greater in preparations of spontaneously 
hypertensive rats (SHR) compared to those of age-matched 
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normotensive Wistar-Kyoto rats (WKY), in line with the larger 
EDCF-mediated responses in the former[12, 15, 27].  On the other 
hand, no significant difference in the increase of calcium con-
centration in the two strains was observed if the aortae were 
exposed to A23187[27].

Phospholipase A2

The increase in endothelial concentration of the activator ion 
elicited by agonists such as acetylcholine involves two steps, 
release of calcium from the sarcoplasmic reticulum followed 
by influx of extracellular calcium.  Acetylcholine binds to the 
G proteins-coupled muscarinic receptors on the endothelial 
cell membrane and activates phospholipase C.  The latter pro-
duces inositol triphosphate which in turn causes the release 
of calcium from intracellular stores.  The resulting calcium-
depletion process leads to the production of a messenger 
termed calcium influx factor [CIF; [30]] which displaces the 
inhibitory calmodulin from the calcium-independent phos-
pholipase A2 [iPLA2; [31–34]].  Activation of iPLA2 is an initiating 
event in the generation of EDCF induced by acetylcholine in 
the rat aorta[35].  Activated iPLA2 produces lysophospholipids 
which facilitate the opening of store-operated calcium chan-
nels (SOCs) leading to the influx of extracellular calcium into 
the endothelial cells[34, 36].  This large influx of calcium ions then 
activates the calcium-dependent phospholipase A2 (cPLA2) 
which converts membrane phospholipids to arachidonic acids, 
the precursor of prostanoids (Figure 1).  That the calcium-
dependent form of phospholipase A2 is crucial for the ultimate 
production of EDCF is demonstrated by the observation that 
a specific inhibitor of iPLA2 does not affect A23187-induced 
endothelium-dependent contractions, while quinacrine, which 
inhibits both forms of the enzyme, abolishes the response to 
both acetylcholine and A23187[12, 35].

Vitamin D and EDCF
High concentrations of vitamin D appear to have an acute 
protective effect on endothelial cells by reducing the produc-
tion of EDCF.  Indeed, the in vitro administration of 1,25-dihy-
droxyvitamin D3 [the most active metabolite of vitamin D[37]] 
reduces EDCF-mediated responses induced by acetylcholine 
but not by the calcium ionophore A23187 in aorta of both SHR 
and WKY, suggesting that vitamin D acutely reduces EDCF 
production by an action upstream of the increase in calcium 
concentration and thus interferes with the calcium surging 
process (Figure 1)[26].

Cyclooxygenase
The two isoforms of cyclooxygenase (COX), COX-1 and 
COX-2, have a comparable ability to catalyze the transfor-
mation of arachidonic acid into prostaglandins (Figure 2)[38].  
Both isoforms can play a key role in the generation of EDCF 
depending on the species, the blood vessel studied and the 
health conditions of the donor[2, 3, 19, 28, 39–42].  COX-1 is con-
stitutively expressed in most tissues while COX-2 is induc-
ible[43, 44].  Early studies demonstrated that non-selective COX 
inhibitors abolish endothelium-dependent contractions[13, 17], 

an observation that has been repeated over the years.  Selec-
tive inhibitors of COX-1, but not those of COX-2, abrogate 
endothelium-dependent contractions in the rat aorta[15, 45–47].  In 
that preparation, COX-1 is expressed in both endothelial and 
vascular smooth muscle cells, but the over-expression of this 

Figure 1.  Acetylcholine (ACh) activates muscarinic receptors (M) on 
the endothelial cell membrane and triggers the release of calcium from 
intracellular stores.  The resulting calcium-depletion process displaces 
the inhibitory calmodulin (CaM) from iPLA2.  Activated iPLA2 produces 
lysophospholipids (LysoPL) which in turn open store-operated calcium 
channels (SOCs) leading to the influx of extracellular calcium into 
the endothelial cells.  This large influx of calcium ions then activates 
cPLA2 which catalyze the production of arachidonic acids (AA).  The 
later is then metabolized by cyclooxygenase-1 (COX-1) to prostanoids.  
1,25-Dihydroxyvitamin D3 (Vit D) acutely reduces endothelium-dependent 
contraction by inhibiting the calcium surge.  cPLA2=calcium dependent 
phospholipase A2; EC=endothelial cells; iPLA2=calcium independent 
phospholipase A2; PGD2=prostaglandin D2; PGE2=prostaglandin E2; 
PGF2α=prostaglandin F2α; PGH2=endoperoxides; PGI2=prostacyclin; 
PL=phospholipids; SERCA=sarco/endoplasmic reticulum Ca2+-ATPase; 
SR=sarcoplasmic reticulum; TXA2=thromoboxane A2.

Figure 2.  Metabolism of arachidonic acid into specific prostanoids.  
Arachidonic acid is converted to endoperoxides by the activity of 
cyclooxygenase (COX).  Endoperoxides are then converted to various 
prostaglandins by their respective synthase.
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isoform seen in the SHR aorta is confined to the endothelial 
cells[48].  Likewise, bioassay studies demonstrate that only the 
activation of endothelial COX contributes to the generation of 
diffusible EDCF in the SHR aorta[15].  Endothelium-dependent 
contractions are present in the aorta of COX-2, but not in that 
of COX-1 knock-out mice[49].  Taken in conjunction, these find-
ings demonstrated that COX-1 is the preferential constitutive 
isoform of cyclooxygenase which mediates endothelium-
dependent contractions in large arteries of rat and mice.  How-
ever, with aging or disease, COX-2 can be induced and then 
contributes to EDCF-mediated responses[50–53].  By contrast, 
constitutively expressed COX-2 plays a dominant role in the 
endothelium-dependent contraction of the hamster aorta irre-
spective of age[39].

Prostanoids
Cyclooxygenase converts arachidonic acid into endoperoxides 
(PGH2), the intermediate of the prostanoid biosynthesis, which 
can either act as an EDCF per se[47, 54] or be further transformed 
into prostacyclin (PGI2), thromboxane A2 and various other 
prostaglandins including prostaglandin D2 (PGD2), prostaglan-
din E2 (PGE2) and prostaglandin F2α (PGF2α) by their respective 
synthases (Figure 2)[29, 48, 55, 56].  

Although PGH2 has a relatively short half-life and is 
unstable[57], it can be a vasoconstrictor EDCF[29, 47, 48, 55] by acti-
vating TP receptors of vascular smooth muscle[47, 57, 58].  This 
conclusion is supported by two observations: (a) The aorta 
of SHR releases more PGH2 than that of WKY when exposed 
to acetylcholine[47].  (b) Similarly to the acetylcholine-induced 
EDCF-mediated responses, PGH2-induced contractions in aor-
tae without endothelium are transient and are larger in SHR 
compared to WKY[47, 56].  In addition, when tyrosine nitration 
caused by the local production of peroxynitrite inhibits the 
activity of prostacyclin synthase[59], PGH2 may become even 
more important in the process.

Prostacyclin is the major cyclooxygenase-derived metabolite 
of arachidonic acid in endothelial cells[60].  During endothe-
lium-dependent contractions of rodent aortae in response to 
acetylcholine, its production is markedly larger than that of 
other prostaglandins and, together with PGH2, prostacyclin 
becomes a major EDCF[19, 21, 47, 53, 56].  This conclusion is in line 
with the findings that the gene expression of PGI synthase in 
the rat aortic endothelial cells is greatly augmented by aging 
and spontaneous hypertension[48].

During ADP- and A23187-induced endothelium-dependent 
contractions, the release of thromboxane A2 is augmented and 
an inhibitor of thromboxane A2 can reduce these contractions, 
unlike those to acetylcholine[29, 55, 57].  Therefore, thromboxane 
A2 can be regarded as a key EDCF during the EDCF-mediated 
responses elicited by these agents.  Likewise, in certain blood 
vessels (hamster aorta) or with aging and disease (such as 
diabetes), an augmented contribution of PGE2 and PGF2α to 
EDCF-mediated contractions may become obvious[39, 61].  This 
can be explained best by the increased generation of these 
prostaglandins under conditions of enhanced oxidative 
stress[62], in particular as a consequence of the augmented for-

mation of peroxynitrite which inhibits PGI synthase[59, 63] and 
diverts arachidonic acid towards PGE2 and PGF2α synthases[56].  
Obviously, the involvement of individual prostanoids in 
EDCF-mediated responses varies depending on the species, 
the blood vessels studied, the endothelium-dependent agonist 
used, and the age and disease state of the donor.

Reactive oxygen species
Reactive oxygen species (ROS) are generated during a num-
ber of normal metabolic activities, but their overproduction 
leads to oxidative stress which is commonly observed in 
hypertension, diabetes and atherosclerosis[20, 64, 65].  During 
the generation of prostanoids by COX, ROS are formed as 
by-products.  ROS of relevance for endothelium-dependent 
responses include superoxide anions (O2

–), hydroxyl radi-
cals (·OH) and hydrogen peroxide (H2O2) (Figure 3).  ROS 
either directly act as EDCF[66, 67] or indirectly potentiate EDCF-
mediated responses by reducing the bioavailability of NO[68–70] 
and activating COX in the vascular smooth muscle cells[16, 18, 71].  
This conclusion is based on the following observations: (a) 
An increased ROS production accompanies acetylcholine- or 
A23187-induced endothelium-dependent contractions[27]; (b) 
Tiron (which scavenges superoxide anions intracellularly) 
or catalase (which converts hydrogen peroxide to water and 
oxygen) plus deferoxamine (which prevents the formation of 

Figure 3.  Formation of oxygen-derived free radicals of relevance for 
endothelium-dependent responses, and pharmacological agents 
commonly used to determine their importance.  Superoxide anions 
(O2

−) can be generated from molecular oxygen by the actions of various 
enzymes.  O2

− can react with NO to form peroxynitrite (ONOO−).  It can also 
be converted to hydrogen peroxide (H2O2) by superoxide dismutase (SOD).  
H2O2 can be transformed to hydroxyl radicals by ferrous ions or converted 
to H2O by catalase and glutathione.  Tiron scavenges O2

− inside cells.  
DETCA inhibits SOD.  Deferoxamine is an iron chelator that scavenges 
hydroxyl radicals.  L-NAME inhibits NO synthase.  MnTMPyP mimics the 
combined effect of SOD and catalase.  DETCA=diethyldithiocarbamic 
acid; GSH=glutathione; GSSG=glutathione disulphide; L-NAME=Nω-
nitro-L-arginine methyl ester hydrochloride; MnTMPyP=Mn(III)tetrakis(1-
methyl-4-pyridyl)porphyrin pentachloride; NO=nitric oxide; tiron=4,5-
dihydroxy-1,3-benzenedisulphonic acid.  (Adapted from Shi et al 2007, by 
permission)Arachidonic acid is converted to endoperoxides by the activity 
of cyclooxygenase (COX).  Endoperoxides are then converted to various 
prostaglandins by their respective synthase.
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hydroxyl radicals) reduce endothelium-dependent contrac-
tions in the SHR aorta[72] and the femoral artery of diabetic 
rats[64], suggesting that superoxide anions and hydrogen 
peroxide augment or even mediate part of the response; (c) 
ROS formed by the xanthine plus xanthine oxidase reac-
tion elicit contractions of SHR aortae without endothelium 
which are prevented by both COX inhibitors and TP receptor 
antagonists, suggesting that the oxygen-derived free radicals 
stimulate COX in the vascular smooth muscle to produce 
prostanoids which in turn activate their TP receptors[18, 72].  
(d) ROS increase the degradation of nitric oxide[68, 69]; (d) Per-
oxynitrite, a strong cytosolic oxidant generated by the reac-
tion of the superoxide anions and nitric oxide, inactivate PGI 
synthase[59, 63] and shifts the production of prostacyclin to that 
of other vasoconstrictor prostanoids[56, 73].  (e) In canine basilar 
arteries, superoxide dismutase (SOD) plus catalase abolish 
the A23187 induced endothelium-dependent contractions but 
not the production of prostaglandins and thromboxane A2 
indicating that ROS rather than COX-derived prostanoids are 
the EDCF in this particular artery[66]; (f) In the rat pulmonary 
artery, ROS induce contraction involving the activity of pro-
tein kinase C in the vascular smooth muscle[74]; (g) In vascular 
smooth muscle of the rat aorta, the ROS-induced calcium 
sensitization is mediated through the activation of Rho and a 
subsequent increase in Rho kinase activity[75], and the latter is 
crucial in the response to EDCF[76]; and (h) ROS directly depo-
larize vascular smooth muscle by inhibiting ATP-sensitive 
potassium channel (KATP), voltage-activated potassium chan-
nel (Kv) and large conductance calcium-activated potassium 
channel (BKCa)[77–79].

Gap junctions
The contact between endothelial and vascular smooth muscle 
cells is important in the genesis of endothelium-dependent 
contractions.  This conclusion is supported by the observation 
that the endothelium-dependent contractile response to ace-
tylcholine of layered bioassay (“sandwich”) preparations of 
SHR aortae is much smaller than that of intact aortic rings[72].  
The contraction in the “sandwich preparation” is caused by 
prostanoids which diffuse across the intracellular gap between 
the donor (containing endothelial cells) and the recipient strip 
(without endothelium, responsible for the contraction).  Under 
bioassay conditions, superoxide dismutase plus catalase 
(both compounds with poor cell permeability) can reduce the 
acetylcholine-induced endothelium-dependent contractions 
while they have no effect in intact rings in which tiron inhibits 
EDCF-mediated responses[15, 18].  These observations imply that 
in intact rings, ROS exert their facilitatory effect by either act-
ing in the endothelial cells or being transported from the latter 
to the vascular smooth muscle cells via preferential channels 
not accessible to superoxide dismutase.  One possible route 
would be the myoendothelial gap junctions (Figure 4), since 
the gap junction inhibitor carbenoxolone reduces endothe-
lium-dependent contractions to acetylcholine and the calcium 
ionophore A23187[80].

Prostanoid receptors and Rho kinase
Thromboxane-prostanoid receptors (TP-receptors) are the 
most important prostanoid receptor subtype involved in 
endothelium-dependent contractions since TP receptor antag-
onists abolish these responses[15, 57, 81].  All prostanoids are able 
to bind with TP receptors, albeit with different affinities[82].  
Thromboxane A2 is the most potent agonist at TP receptors.  
Endoperoxides and prostacyclin also activate TP receptors 
and both of them evoke transient contractions (probably due 
to their short half-life) which mimic acetylcholine-induced 
endothelium-dependent contractions[56].  Binding of EDCF to 
the TP receptors in turn activates the downstream Rho kinase 
pathway leading to the increased contractile activity of the 
vascular smooth muscle[76].

In the SHR aorta, the gene expression levels and protein 
presence of TP receptors are not altered, but the responsive-
ness to endoperoxides is augmented compared to WKY 
preparations[47, 48].  This hyperresponsiveness contributes to 
the prominence of EDCF-mediated responses in the aorta of 
the SHR.  Another crucial aspect in this prominence is that 
the vascular smooth muscle of aging WKY and of the SHR 
have lost the ability to respond with relaxation to prostacyclin, 
despite an unchanged expression of IP receptors and the large 
production of prostacyclin by endothelial cells exposed to 
acetycholine or A23187[48, 56, 83, 84].

Interactions between NO, EDHF, and EDCF
In the SHR aorta, the concomitant release of NO inhibits 
endothelium-dependent contractions to acetylcholine[85, 86], an 
observation that has lead to the systematic use of inhibitors of 
NO synthases when studying EDCF-mediated responses.  In 
addition, previous exposure to endothelium-derived NO or 
exogenous NO-donors causes a long-term inhibition of EDCF-
mediated responses[87, 88].  Likewise, in the renal artery of the 
rat, the absence of EDHF favours the occurrence of endothe-
lium-dependent contractions[9].

Alternatively, EDCF may also counteract the action of 
endothelium-derived relaxing factors.  Thus, in WKY mes-
enteric artery, EDHF-mediated relaxations are attenuated by 
the release of EDCF[89].  This attenuation is explained best by 
the EDCF-induced activation of TP-receptors which depolar-
izes the vascular smooth muscle cells by inhibiting Kv and 
BKCa

[90, 91].  

Physiological importance
In the early nineteenth century, Bayliss showed that an 
increase in the internal pressure in the carotid artery of the 
dog caused its constriction, a seminal observation leading to 
the concept of autoregulation[92].  In isolated basilar arteries of 
the same species, stretch induces a contraction which disap-
pears after the removal of the endothelium, demonstrating an 
endothelium-dependent process[14].  This contraction is sensi-
tive to both the COX inhibitor indomethacin and the calcium-
influx blocker diltiazem, suggesting that the activity of COX 
(presumably in the endothelial cells) and the influx of extracel-
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lular calcium (presumably in the vascular smooth muscle cells) 
are required for the active response to stretch[14].  Likewise, in 
bovine coronary arteries, stretch elicits an endothelium-inde-
pendent contraction which requires the activation of NAD(P)
H oxidase[93].  Stretch also directly activates various cation 
channels on the smooth muscle cells of small arteries facilitat-
ing their contraction[94–96].  Oxygen-derived free radicals play a 
key role in endothelium-dependent contractions of the canine 
basilar artery[66].  Thus, it is tempting to speculate that the 
endothelium-dependent contraction evoked by stretch (result-
ing from activation of endothelial COX, the production of ROS 
and the hypersensitivity of the vascular smooth muscle) may 
initiate the autoregulatory response, at least in cerebral arteries.

Pathophysiological relevance
As mentioned already, endothelium-dependent contrac-
tions are exacerbated by aging, diabetes, hypertension and 
atherosclerosis[41, 97, 98].  Foe example, the blunted endothelium-
dependent relaxations in response to acetylcholine in diabetic 
animals is partly due to the augmented production of EDCF, 

resulting from the over-expression and activation of COX 
and increased ROS production after the chronic exposure 
of the endothelial cells to high glucose levels[99].  In essential 
hypertensive patients, the blunted vasodilatation induced by 
acetylcholine can almost be normalized by the COX inhibi-
tor indomethacin indicating that COX-derived vasoconstric-
tors are key players responsible for the abnormal endothelial 
response[100].  This indomethacin-sensitive impairment of the 
response to acetylcholine is accentuated by aging[98].  How-
ever, in secondary hypertension, inhibition of COX does not 
restore the acetylcholine-induced vasodilatation suggesting 
that EDCFs are not equally important in all cases of hyperten-
sion.  It is likely that the prominence of endothelium-depen-
dent contractions observed in arteries of aging and diseased 
(essential hypertension, diabetes) animals and human reflects 
the progressive inability of the endothelial cells to generate 
enough NO to curtail the production of EDCF[40, 87, 88].  Shifting 
from the normal release of NO (and EDHF) to that of EDCF 
likely plays an important role in the development of vascular 
disease[40, 101].

Figure 4.  Endothelium-dependent contraction is likely to be comprised of two components: generation of prostanoids and ROS.  Each component 
depends on the activity of endothelial COX-1 and the stimulation of the TP receptors located on the smooth muscle to evoke contraction.  In the SHR 
aorta, there is an increased expression of COX-1 and EP3 receptors, increased release of calcium, ROS, endoperoxides and other prostanoids, which 
facilitates the greater occurrence of endothelium-dependent contraction in the hypertensive rat.  The necessary increase in intracellular calcium 
can be triggered by receptor-dependent agonists, such as acetylcholine or ADP, or mimicked with calcium increasing agents, such as the calcium 
ionophore A23187.  The abnormal increase in intracellular ROS can be mimicked by the exogenous addition of H2O2 or the generation of extracellular 
ROS by incubation of xanthine with xanthine oxidase.  AA=arachidonic acid; ACh=acetycholine; ADP=adenosine diphosphate; H2O2=hydrogen 
peroxide;m=muscarinic receptors; P=purinergic receptors; PGD2=prostaglandin D2; PGE2=prostaglandin E2; PGF2α=prostaglandin F2α; PGI2=prostacyclin; 
PLA2=phospholipase A2; ROS=reactive oxygen species; TXA2= thromboxane A2; X+XO=xanthine plus xanthine oxidase.  (Adapted from Tang and 
Vanhoutte, 2009, by permission).
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Conclusion
Endothelial cells release COX-derived vasoconstrictor pros-
tanoids and reactive oxygen species, which have been termed 
EDCF.  In the SHR, prostacyclin becomes a prominent EDCF 
acting on TP-receptors, even more so that IP receptor signal-
ing is impaired[21, 56, 83].  EDCF-mediated responses are ampli-
fied in aging normotensive animals (Koga et al, 1989; Wong 
et al, 2009), hypertensive[12] and diabetic[20, 50, 64, 102] animals.  In 
humans, EDCF plays a role in the endothelial dysfunction that 
accompanies aging, atherosclerosis, myocardial infarction and 
essential hypertension[98, 103, 104].
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